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ABSTRACT 

This paper presents a discussion about matrix-based 
representation evaluation measures, including a review of related 
evaluation measures from different scientific disciplines and a 
proposal for promising approaches. The paper advocates linking 
or replacing a large portion of indefinable aesthetics with a 
mathematical framework and theory backed up by an 
incomputable function – Kolmogorov complexity. A suitable 
information-theoretic evaluation measure is proposed together 
with a practical approximating implementation example for 
Bertin’s Matrices. 

Categories and Subject Descriptors 

F.1.3 [Theory of Computation] Complexity Measures and Classes 

H.5.2 [User Interfaces]: Evaluation/methodology 

General Terms 

Measurement, Experimentation, Human Factors 

Keywords 

Visualization, Evaluation metrics, Kolmogorov Complexity 

1. INTRODUCTION 
There has been some interesting work in information visualization 
community comparing, analyzing and discussing the differences 
between node-link diagrams and matrix-based representation 
[1,2]. MatrixExplorer is a (social) network visualization system 
using exactly those two representations [3]. These inquiries go 
back to 1940s, when a dialogue took place between Forsyth, Katz 
and Moreno [4,5,6]. 

However, there has been relatively little discussion from the 
visualization perspective regarding different strategies and 
theories to (re)order the data in  matrices, as there are 
row!*column! permutations to encode and visualize the same data 
without losing data consistency or transforming data. Henry and 

Fekete have addressed this issue through a user study to 
understand “how the layout of table data affects the user 
understanding and his exploration process” [7]. 

Bertin demonstrated the power of data rearrangement in matrices, 
stressing the importance of simultaneous availability of three 
information levels in every effective visual display of data, e.g. a 
classic example of townships in Fig. 1 [8,9]. One should be able 
to find an immediate visual reply to: 1) questions asked about the 
details of data presented in rows and columns, (e.g. Does 
township '08' have a railway station? Which townships have 
police stations); 2) local patterns found in the data (e.g. Where 
there is no water supply, there are no high schools); and 3) global 
patterns and trends found in the data (e.g. We are able to identify 
the transformation of rural areas to urban and what changes take 
place in the characteristics supporting such a transition). 

 

Figure 1. Bertin's [8,9] example of matrix reordering 

Setting aside Bertin’s elegant and intuitive example, two 
interconnected important question remain: 

• What exactly is the goal of such generic reordering 
procedure (how to formalize it)? 

• How to reach that goal!? 
 

Bertin ([8], p.6) proposed the goal, "simplifying without 
destroying". He was convinced ([8], p.7) that simplification was 
"no more than regrouping similar things." Bertin stated that, with 
assistants and mechanical devices, "it only takes three days to 
construct a matrix and three weeks to process and interpret it more 
deeply”, which he expected to improve over time. At the same 
time, several algorithms for automatic matrix reordering 
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(seriation) already existed, but a quick propagation of such 
developments and results was restrained and muted by the barriers 
of different scientific traditions and disciplines.  

Mueller et al [10] have recently extended the work of Ling [11] 
on visualizing similarity matrices to large-scale graphs and 
evaluate the interpretability of results from different one-mode 
vertex ordering algorithms, including sensitivity to the initial 
order of rows and columns [12]. For recent reviews of matrix 
reordering (seriation) methods, see refs [13,12]. 

This paper will provide a very cursory and generalized review of 
main evaluation strategies applied in different scientific 
disciplines (in section 2), present an information-theoretic 
visualization evaluation measure (in section 3) with a practical 
implementation example (in section 4), concluding with a 
discussion and directions for future research (in section 5). 

2. RELATED EVALUATION MEASURES 
Let us take another look at Bertin’s example (Figure 1) and think 
again about the (definable) goal of such a procedure and result.  

Should it make a big difference if the order of rows and columns 
were inverted? One could argue that the interpretation would not 
be much different. Unfortunately, there exist several domain-
specific matrix visualization evaluation measures, where inversion 
of row order can change dramatically the result (e.g. grouping 
efficiency [14] and grouping efficacy [15] in cellular 
manufacturing). Researchers applying matrix reordering methods 
in archaeology for relative dating and sequential arrangement of 
events, reached an interesting conclusion: even if we find a visual 
order that suggests a true chronological ordering, external 
information is needed to give hints about the directions of time 
([16], p.60). 

If we identify clusters from the results (e.g. “Villages” from 
Figure 1), should the inter-cluster order of rows (and columns) 
make a difference? (e.g. Would it make a difference to change the 
rows 4 and 7 in the result?) For matrix reordering methods using 
hierarchical clustering methods and a dendrogram to reorder the 
rows and columns accordingly to produce a result, it is difficult to 
identify the inter-cluster behavior. There are "2n-1 linear orderings 
consistent with the structure of the tree" [17] generated by 
hierarchical clustering. An arbitrary selection from all possible 
orderings works as a strong heuristic, but most probably will not 
result in satisfactory results if the similarity between neighbouring 
elements and high overall regularity within the data matrix is 
important. To remedy this situation, several authors have 
proposed additional procedures to perform optimal leaf ordering 
of the dendrogram [17,18]. 

Alternative solutions are present if the goal is defined as a 
combinatorial optimization problem for ordering objects to 
maximize overall adjacency similarity. With that approach 
(e.g.[3]) we could relate it to traveling salesman problem and 
solve it with available heuristics and computer programs. For 
example, Verin and Grishin [19] tried to find a permutation that 
would minimize the sum of Hamming distances in order to 
measure the “quality estimate of image smoothness” with 
matrices. 

However, combinatorial optimization approaches bring us back to 
the classical problem – how to define similarity, results will be 
completely different. Instead of entity-to-entity similarity, we 

could also look at data cell neighborhood similarity, and even for 
neighborhoods, there are several different examples for evaluating 
matrix visualizations (McCormick et al [20] used von Neumann 
neighborhood and Niermann [21] used Moore’s). All of those 
issues are far from being relevant only to Bertin’s matrices, but 
emerge in all visualizations where similarity ordering is being 
introduced (e.g. [22,23,24]). 

To summarize, main strategies and heuristics to reorder matrices 
have been: solutions using domain-specific heuristics (e.g. 
[14,15,16]); hierarchical clustering related solutions [25];  
adjacency similarity maximization, both at entity-to-entity and 
neighborhood methods [3,19,20,21].  

To further illustrate the problem, Figure 2 presents an initial 
matrix (a) and three possible (out of rows!*columns! 
combinations) “good” visualizations of the same data according to 
different algorithms and loss functions.  

(a) 

(b) 

(c) 

(d) 

Figure 2. Initial matrix and different visual permutations 
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Clearly all three are better than the initial, but which one is the 
best – would there be an unifying measure to compare them? The 
data compression approach presented in the next section is a good 
start to work towards unifying domain and task-specific objective 
functions. 

3. INFORMATION-THEORETIC 

EVALUATION MEASURE 
Kolmogorov complexity is the length of the shortest effective 
description of an object. We suggest looking at the matrix 
visualization evaluation, using data compression as a special case 
of Kolmogorov complexity of a string where it is allowed to 
"cheat" under specific restrictions to make regularity in the string 
more apparent and therefore more compressible. A pixel based 
representation of the matrix and string based (textual) 
representation of the matrix are considered to have a one-to-one 
mapping. The most efficient "cheating procedure" is then what we 
are looking for. The use of Kolmogorov complexity and the 
minimum description length principle [26,27] is gaining 
acceptance and popularity in the data mining and information 
visualization communities [28,29,30,31]. According to Wilkinson 
([31], p.531) “a well-permuted image can be thought of as one 
requiring a minimum number of bits to encode it (compared to 
other permutations). In other words, a well-permuted image is 
more compressible.” This statement fits perfectly with the 
approach of this paper. The proposed approach itself, however, 
will be different from Wilkinson’s, as he presented two loss 
functions related to entropy, which were based on the 
neighborhood similarity of data cell. In this paper, instead of 
using entity-to-entity or cell neighborhood similarity measures, 
the whole dataset and its compressibility is considered at once. 
The main contribution of this approach is a possible future cross-
fertilization of information visualization and data compression 
communities. 

Definition. Matrix reordering can be defined as a combinatorial 

optimization problem for minimizing a loss function L on a matrix 

A using permutation matrices Π and Φ for reordering the rows 
and columns in a way that maximizes the local and global 
patterns: 
 

 )(minarg , ΠΑΦ
ΦΠ

L  
 

(3.1) 

 
ΠAΦ denotes a matrix A multiplication with permutation matrix 
Π from the left (to reorder the rows of the original matrix) and 
with permutation matrix Φ on the right (to reorder the columns of 
the orgininal matrix). L denotes an arbitrary loss function, which 
describes a visual clutterness in the visualization. However, if we 
replace the arbitrary loss function with a specific mathematical 
function with an incomputable property, we are able to work 
towards practical approximating implementations. 

 

Definition. Given all N!•M! permutations of A, we want to select 
permutation matrices Π and Φ such that the length of the shortest 
encoding (according to minimum description length principle 
[26,27]  of matrix multiplication ΠAΦ is minimal. 

 
 

We can look at this definition also as a combinatorial optimization 
problem of finding permutation matrices Π and Φ to minimize the 
following: 
 

 )(minarg , ΠΑΦ
ΦΠ

K  
 

(3.2) 

 
However, as Kolmogorov complexity is incomputable, we will 
make an approximation using the length l of the result of an 
arbitrary compression algorithm (e.g. gzip): 

 

 
 
 

)).((minarg , ΠΑΦ
ΦΠ

compressl  
 

(3.3) 

Besides the formal notation, we will make a practical 
implementation example of the proposed measurement, using 
shell scripting and Unix piping to secure rapid repeatability and 
scrutiny for everyone with the access to some Unix-based 
operating system. 

4. A PRACTICAL EXAMPLE 
We will provide a practical example of implementing the 
proposed measure with a standard compression tool gzip, which 

is included by default under most and available for all Unix-based 
operating systems (Mac OS X, Linux, FreeBSD, Solaris etc.). 
gzip is also freely available for Microsoft Windows platforms 

and the following examples are easily repeatable there as well 
with possible minor modifications. 

First, we have to encode our example datasets into binary strings 
and textfiles as shown in Fig. 3. We will be measuring matrix 
visualization quality with the classical Townships example with 
the solution by Jacques Bertin ([8], p.33), which forms almost a 
reverse block diagonal form, but similarly to real-world datasets, 
does not provide a completely pure decomposition to partitions. 
 

 
Figure 3. Guideline for encoding the Bertin dataset 

 
It is easy to print out the initial matrix and evaluate the 

correctness of matrix transposition directly in a shell environment 

of the operating system using a trivial matrix transposition script 

and standard md5 hashing tool: 
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> cat bertin 

0000000100100000 

0111001000010010 

0000000100100000 

1100110011001101 

0111001000010010 

1100110011001101 

0000000001000100 

0010000100100000 

0111001000010010 

> cat bertin | md5 

b650d20c6c224076c8b6baf69c61fcfc 

> cat bertin | ./TRANSPOSE_MATRIX | 

./TRANSPOSE_MATRIX | md5 

b650d20c6c224076c8b6baf69c61fcfc 

 

Measuring the “goodness” of Bertin's initial and unordered 
dataset can be done by printing the content of the file bertin to 
gzip input using piping  and measuring the bytes using wc –c: 

 
> cat bertin | gzip --best | wc –c 

      57 

> cat bertin | ./TRANSPOSE_MATRIX | gzip --

best | wc –c 

      62 

 

Such output should be interpreted as follows: Matrix stored in 

bertin can be compressed to 57 bytes using gzip and the 

transposed matrix to 62 bytes, respectively. The lowest from those 

two is 57, making it the goodness measure (equation 3.3) for that 
permutation of the matrix, which is the initial and unordered 
version of the matrix in the specific case. 

Next, we will measure the compressibility of the matrix 
permutation solution provided by Bertin ([8], p.33): 

> cat bertin_solution 

0000000000000011 

0000000000000011 

0000000000000111 

0000000011111100 

0000000011111100 

0000000011111100 

1111111110000000 

1111111110000000 

1100000000000000 

> cat bertin_solution | gzip --best | wc -c 

      49 

> cat bertin_solution | ./TRANSPOSE_MATRIX | 

gzip --best | wc -c 

              47 

The evaluation of compressibility of that permutation gives us 49 

bytes for the proposed solution matrix and 47 bytes for the matrix' 

transposition, resulting evaluation measure of 47 according to 
equation (3.3). 

If we compare this solution with an alternative permutation 
bertin.min using the same initial dataset, we get the following 
result: 

 

> cat bertin.min 

0000000011111100 

0000000011111100 

0000000011111100 

0000000000000111 

0000000000000011 

0000000000000011 

0000001100000000 

1111111110000000 

1111111110000000 

> cat bertin.min | gzip --best | wc -c 

      48 

> cat bertin.min | ./TRANSPOSE_MATRIX | gzip 

--best | wc -c 

      48 

The evaluation measure for this permutation is 48 for the matrix 
and its transposition. By visual inspection, we can see that the 
alternative solution is also able to decompose the system into 
groups, however, not providing as seamless transformation as 
Bertin's manual solution, which also concords with the slightly 
better result attained with data compression. 

5. CONCLUSIONS AND FUTURE WORK 
The paper advocates that it is more than reasonable to link 
indefinable aesthetics with a mathematical framework and theory 
backed up by an incomputable function – a perfect match! Using 
the Kolmogorov complexity in an information visualization metric 
would enable us to replace a number of aesthetics issues (yet 
undefined) with the minimum description length principle and 
Occam’s razor. Additionally, a myriad of methods and techniques 
built on Kolmogorov complexity and the minimum description 
length principle become available for information visualization 
community. 

This kind of practical approach of Kolmogorov complexity should 
be further researched toward pixel-based [22,23] and other 
visualization techniques, where there is one to one and reversible 
mapping between an original data point and visualization without 
a transformation or aggregation process.  
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