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Abstract: Seriation is an exploratory combinatorial data analysis technique to reorder objects into a sequence along a
one-dimensional continuum so that it best reveals regularity and patterning among the whole series. Unsupervised learning,
using seriation and matrix reordering, allows pattern discovery simultaneously at three information levels: local fragments
of relationships, sets of organized local fragments of relationships, and an overall structural pattern. This paper presents an
historical overview of seriation and matrix reordering methods, several applications from the following disciplines are included
in the retrospective review: archaeology and anthropology; cartography, graphics, and information visualization; sociology and
sociometry; psychology and psychometry; ecology; biology and bioinformatics; cellular manufacturing; and operations research.
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1. INTRODUCTION

Different traditions and disciplines struggle for the lead-
ing position toward providing the best insights about the
data. Seriation, which is the focus of this paper, can be posi-
tioned at the intersection of data mining, information visual-
ization, and network science. All those areas share similar
essential goals, but have minimal overlap in mainstream
research progress. Prominent authors in the discipline of
information visualization [1] (p. 351) have identified that
the data mining community gives minimal attention to
information visualization, but believe that ‘there are hope-
ful signs that the narrow bridge between data mining and
information visualization will be expanded in the coming
years’. Shneiderman [2] has pointed out that ‘most books
on data mining have only a brief discussion of information
visualization and vice versa’ and that ‘the process of com-
bining statistical methods with visualization tools will take
some time because of the conflicting philosophies of the
promoters’.

A seriation and matrix visualization result contains the
clustering of data with additional information about how
one cluster is related to another, what the bridging objects
are, and what the transition of the objects is like inside the
cluster. From the perspective of association rules, a result of
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seriation can also be interpreted as a chain of associations
between objects, which is a non-redundant and optimal
presentation of a possibly very lengthy list of association
rules. Moreover, it also introduces structural context to
those relationships.

Späth [3] (p. 212) considered such matrix permutation
approaches to have a great advantage in contrast to the
cluster algorithms, because ‘no information of any kind is
lost, and because the number of clusters does not have to
be presumed; it is easily and naturally visible’. Murtagh
[4], Arabie and Hubert [5,6] referred to similar advantages
calling such an approach a ‘non-destructive data analysis’,
emphasizing the essential property that no transformation
or reduction of the data itself takes place.

Bertin described the procedure [7] (p. 6) as ‘simplifying
without destroying’ and was convinced (p. 7) that simplifi-
cation was ‘no more than regrouping similar things’.

Seriation is closely related to clustering, although there
does not exist an agreement across the disciplines about
defining their distinction. In this paper, seriation is con-
sidered different from clustering as shown in Fig. 1. The
linking element between those two methods is a clustering
with optimal leaf ordering [8–10], which, from the per-
spective of clustering, is a procedure ‘to order the clusters
at each level so that the objects on the edge of each cluster
are adjacent to that object outside the cluster to which it is
nearest’ [8]. From the perspective of seriation, the result is

 2010 Wiley Periodicals, Inc.



Liiv:Seriation and Matrix Reordering Methods 71

SERIATION
CLUSTERING

WITH OPTIMAL
LEAF ORDERING

CLUSTERING

THE FOCUS OF THIS PAPER

Fig. 1 Seriation and clustering.

an optimal ordering and rearrangement, but an additional
grouping procedure is necessary to identify cluster bound-
aries and clusters [11–13].

The goal of this paper is to present an historical overview
of seriation and matrix reordering methods in order to cross-
fertilize and align research activities and applications in
different disciplines.

In the following section, a definition and an example of
seriation will be presented, along with the introduction of
the three most common forms of data representations found
in related literature.

1.1. Seriation: A Definition

Seriation has the longest roots among the disciplines of
archaeology and anthropology, where, for the moment, it
has reached also the maturest level of research. A recent
monograph about seriation by O’Brien and Lyman [14]
includes an extended discussion of the terminology, and
a consensual definition by Marquardt [15] (p. 258):

[Seriation is] a descriptive analytic technique, the pur-
pose of which is to arrange comparable units in a single
dimension (that is, along a line) such that the position of
each unit reflects its similarity to other units.

O’Brien and Lyman [14] (p. 60) point out that ‘nowhere
in Marquardt’s definition is the term time mentioned’,
which perfectly coincides with our interpretation and focus.
However, to make the definition more general and compat-
ible with the rest of this paper and set the scene for the
construction of our own definition, we suggest to:

• understand and interpret the phrase of comparable
units as units from the same mode according to
Tucker’s terminology [16], making it less ambiguous
whether it is allowed or not to arrange column-
conditional and other explicitly non-comparable units
along a continuum;

• give more emphasis to simultaneous pattern discov-
ery at several information levels—from local patterns
to global. It would make the definition compatible
with the requirements set to such matrix permutations
by Bertin [7] (p. 12). He saw information as a rela-
tionship, which can exist among elements, subsets,
or sets, and was convinced that ‘the eye perceives

the three levels of informations spontaneously’ [7]
(p. 181).

Consequently, we are able to construct a definition of
seriation to reflect our emphasis and focus as follows:
Seriation is an exploratory data analysis technique to
reorder objects into a sequence along a one-dimensional
continuum so that it best reveals regularity and patterning
among the whole series.

A higher-mode seriation can be simultaneously per-
formed on more than one set of entities, however, entities
from different sets are not mixed in the sequence and pre-
serve a separate one-dimensional continuum.

This kind of definition is compatible with less rigorous
definitions and highly subjective goals (e.g., to maximize
the human visual perception of patterns and the overall
trend), but encourages the interpretation from the perspec-
tive of minimum description length principle [17,18] and
data compressibility [19-21], [22, p. 531].

For didactic purposes, examples in this section will only
use binary values, however, we consider and discuss several
common value types of the data, where applicable. The
scope is additionally limited to entity-to-entity and entity-
to-attribute data tables, or using Tucker’s [16] terminology
and Carroll–Arabie [23] taxonomy, we are concentrating
on two-way one-mode (N × N ; square tables, where rows
and columns refer to the same entities) and two-mode
(N × M; rectangular tables, where rows and columns refer
to two different sets of entities) data tables. It should be
emphasized that such a scope definition does not restrict
the one-mode data table to be symmetric, or make entity-
to-entity data table to be exclusively one-mode, i.e., there
can be relations between entities from different sets, making
such a table a two-mode matrix.

Let us look at the following example of seriation along
with the introduction of the three most common forms
of how data are presented in the related literature and
throughout this paper: a matrix, a double-entry table with
labels, and a color-coded graphical plot. We may often use
the word matrix in the paper interchangeably to refer to all
of those forms.

An example dataset is first presented as a graph in Fig. 2,
where nodes (vertices) are, for example, companies and arcs
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Fig. 2 An example graph.

between the nodes represent a value stream in the supply
chain.

We will first construct an asymmetric adjacency matrix
that reflects the structure of such a directed graph (i.e., a
non-diagonal entry aij is the number of arcs from node
i to node j ; see refs [24–26] for a discussion about the
differences between node-link diagrams (e.g., Fig. 2) and
matrix-based representation):

A =




1 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0
1 0 0 1 0 0 1 0
0 1 0 1 1 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1




Another way to present the same structure is by using
a double-entry table with node labels, where the positive
elements have been shaded and formatted differently for
better visual perception (Table 1).

Inspired by Czekanowski [27] and Bertin [28], it is often
reasonable to present the matrix with a graphical plot, where
numerical values are color coded. With binary data, the
most typical way is to use filled and empty cells to denote
‘ones’ and ‘zeros’, respectively. Using such an approach,
we can visualize the above structure as presented in Fig. 3.

Table 1. Double-entry table of the example dataset.

01 02 03 04 05 06 07 08

01 1 0 1 0 0 0 1 0
02 0 1 0 0 0 0 0 1
03 0 0 1 0 0 0 1 0
04 1 0 0 1 0 0 1 0
05 0 1 0 1 1 0 0 1
06 0 1 0 0 1 1 0 1
07 0 0 1 0 0 0 1 0
08 0 1 0 0 0 0 0 1

Fig. 3 A graphical ‘Bertin’ plot for the example dataset.

From such plain matrices, tables and plots, it is still
rather complicated to identify the underlying relationships
in the data, find patterns and an overall trend. Objects in
such an adjacency matrix are ordered arbitrarily, typically
in the order of data acquisition/generation, or just sorted
alphabetically by labels or names. Changing the order of
rows and columns, therefore, does not change the structure:
there are n! (or n!m! in case of a two-mode matrix)
permutations of the same matrix that will explicitly reflect
the identical structure of the system under observation. The
goal of seriation is to find such a permutation, i.e., to reorder
the objects from the same mode in a sequence so that
it best reveals regularity and patterning among the whole
series. This does not, by any means, exclude the chance
that data acquisition or alphabetical ordering actually lead
to structurally best ordering, but it should never be assumed
a priori. We can look at this also from the perspective
of a single element (cell), the position of which can be
changed arbitrarily with the constraint that it must always
be moved together with the whole row or column—making
it somewhat similar to the classical game of Rubik’s cube.
An example of the seriation procedure is demonstrated in
Fig. 4.

Clearly, from the right plot of Fig. 4, the underlying
structure and relationships can be far more easily per-
ceived. However, this is exactly where the challenge of
this problem is hidden—how to develop algorithms to per-
form seriation without exhaustive search of all permutations
and how to evaluate the goodness of the result. The new
order for rows and columns on the right plot of Fig. 4

Fig. 4 An example of the seriation procedure.
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Fig. 5 Alternative permutations for the same dataset.

was reached manually by the author with a highly sub-
jective on-the-fly evaluation of the goodness using visual
perception. Actually, this is exactly how it was done in the
1960s and 1970s by a research group directed by a French
cartographer Jacques Bertin [7] (p. 47), who stated that,
with assistants and mechanical devices, ‘it only takes three
days to construct a matrix and three weeks to process and
interpret it more deeply’, which was hoped to become eas-
ier using computers. At the same time, several algorithms
for automatic seriation already existed, but a quick propa-
gation of such developments and results was restrained and
muted by the barriers of different scientific traditions and
disciplines.

An example of two valid alternative permutations found
for the investigated dataset is presented in Fig. 5. Those
results are achieved with algorithms called a bond energy
algorithm (BEA) [29,30] and ‘minus’ technique [31–35].
The former optimizes an objective function and the latter,
if we use the terminology proposed by Van Mechelen et al.
[36] for similar algorithms, does modeling at a procedural
level—a specific heuristical strategy is followed and an
overall loss or objective function to be optimized is not
implied.

One might notice that both of those matrices (Fig. 5)
have different orders for rows and columns. Although we
are dealing with one-mode data, such a treatment is reason-
able if the graph is directed and, therefore, the adjacency
matrix is asymmetric. Finding only a single permutation is
possible (as seen in Fig. 4) in such a scenario, but it could
result in less structured output due to the reordering restric-
tions and require some extra data processing (e.g., making
the adjacency matrix temporarily symmetric for the duration
of the seriation procedure).

Another challenging and focal question concerning the
problem of seriation is defining and evaluating which per-
mutation is the best. For the example presented as a graph
in Fig. 2 and as a Bertin plot in Fig. 3, we have already pro-
posed three (one on the right of Fig. 4 and two in Fig. 5)
relatively good and subjectively interesting permutations.
But which one of those opens up the natural inner structure,
patterns, regularity, and the overall trend the most? One
could subjectively argue that the manual reordering result

(Fig. 4, right) offers the best seamless structural transfor-
mation, or that the result of the minus technique (Fig. 5,
left) illustrates clearly the decomposition of the system and
identifies the bridging elements between the two groups.
The consensual seriation goal is to maximize the similar-
ity between neighboring objects. However, it still leaves
a lot of ambiguity and vagueness for the exact objective
function formulation due to virtually hundreds of ways to
define sameness and similarity.

In the following retrospective overview, the background,
goals and applications of seriation, and matrix reordering
methods in different disciplines will be presented.

2. AN HISTORICAL OVERVIEW

An interested reader of all related work on the topic
should probably start from the Organon collection of the
works by Aristotle (384 BC–322 BC), especially the Cat-
egories [an interesting discussion from the perspective of
classification and clustering has been published by Mirkin
[37] (Section 1.1)] and the Topics. However, in order to
keep the specific and incisive focus on the problem of
seriation, we will begin with the works of Petrie [38] and
Czekanowski [27]. Those works represent a recognized and
a systematic start of seriation and matrix permutation visu-
alization, respectively.

Even within the area of seriation, this overview clearly
cannot be an exhaustive one, but it should give a coherent
view of the related work on the problem and not overlap
existing reviews and survey papers. The main emphasis is
given to the motivation and the incentive to use seriation,
commenting on the developments and examples from the
perspective of the taxonomy developed by Carroll and
Arabie [23] and making suggestions of minor modifications
for implementation steps, where necessary, to make the
approaches compatible with others and cross-applicable.

Where possible, related contributions are categorized by
disciplines. This enables to highlight the domain-specific
motivations, peculiarities, and traits of character, which
could possibly have other interesting interpretations across
disciplines.

Most of the redundancy of research comes from calling
the same thing with different names and calling different
things with the same name. This also applies to seriation;
therefore, we also try to identify the common terminology
in different disciplines.

In addition, two overview sketches (Fig. 6a and b) have
been compiled to summarize the connectedness of related
work in different disciplines. Relations between research
groups and contributions in Fig. 6a are broadly defined as
combinations of implicit and explicit references in those
works, together with the author’s subjective judgment of
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Fig. 6 A visual abstract of the related work in different disciplines.
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(b)

Fig. 6 Continued.

influences, similar approaches and descendence of methods.
Both of the figures also serve as visual abstracts of the
insights found in the subsequent sections.

2.1. Archaeology and Anthropology

Regardless of the geographic differences in understand-
ing and the exact classification of the fields of archaeol-
ogy and anthropology, in this section, we are interested in
something they have in common—scientific approaches for
understanding and reconstructing the past upon partial and
incomplete information. Time and sequential arrangement
of events, cultures, and traditions play an important role
in achieving that goal. There is a wide range of methods
for dating in the field of archaeology. According to our
focus, we are considering only seriation, which belongs
to the branch of relative dating. Although the meaning of
the word is strongly associated with chronological order-
ing and time according to most definitions and among field
practitioners, there exist several accepted and more general
definitions that fit our focus better. According to the def-
inition proposed by Marquardt [15] (p. 258), seriation is
‘a descriptive analytic technique, the purpose of which is
to arrange comparable units in a single dimension (that is,
along a line) such that the position of each unit reflects its
similarity to other units’. O’Brien and Lyman [14] (p. 60)
emphasized that such a definition did not narrow down the
range or characteristics of units to be seriated, nor did it
mention the time as the only or preferred resulting contin-
uum of the linear order attained.

As far as the author knows, the first systematic method
for seriation was developed by an English Egyptologist W.
M. Flinders Petrie [38], who called it sequence dating. His
approach was different from others for depending exclu-
sively on the information and the similarity of findings
versus professional human judgment of evolutionary and
development complexity of artifacts. This type of distinc-
tion and classification is also supported by the seriation
taxonomy presented by Lyman, Wolverton, and O’Brien
[39], who called those two fundamentally different branches
as similiary and evolutionary seriation, respectively. They
also distinguished between three types of similiary seri-
ation—phyletic, frequency, and occurrence. However, the
goal and the structure to be found in those three distinc-
tions coincided with the only difference in the types of
the underlying data. Therefore, from the perspective of this
paper, we will discuss those methods interchangeably and
not highlight such distinction.

Observations and methods presented by Petrie [38] were
not written down using classical mathematical notations,
but are nevertheless recognized [40] for being the first to
clearly formulate the idea of sequencing objects on the
basis of their incidence or abundance. Petrie examined
about 900 graves, ‘representing the best selected graves
from among over 4000’ [38] and assigned them sequence
dates using mainly the characteristics of the found pottery.
Hole and Shaw [41] (p. 4) describe Petrie being able to
‘seriate the pottery chronologically by merely looking at
the characteristics of the handles’. However, there is another
way to look at his data, which makes it more systematic.
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Table 2. Number of the types of pottery which pass through
stages.

Sequence
dates 30 31–34 35–42 43–50 51–62 63–71 72–80

30 6 2 0 0 0 0 0
31–34 2 8 2 0 0 0 0
35–42 0 2 8 2 0 0 0
43–50 0 0 2 7 2 0 0
51–62 0 0 0 2 7 2 0
63–71 0 0 0 0 2 7 2
72–80 0 0 0 0 0 2 6

From the figure presented by Petrie [38] (p. 301), we have
compiled Table 2, showing the enumerations of the types
of pottery that pass through into an adjacent stage. Such
a transformation makes the results compatible with the
current, generally acceptable seriation formats and would
classify as a two-way one-mode data table.

We are able to construct several matrices based on the
data from Table 2, depending on the required input of
our analysis. Matrices can either take into consideration
the numerical values of enumerations (e.g., A(1) and A(2))

or present only the occurrence or absence (e.g., A(3)) of
pottery forms passing through into an adjacent stage:

A(1) =




6 2 0 0 0 0 0
2 8 2 0 0 0 0
0 2 8 2 0 0 0
0 0 2 7 2 0 0
0 0 0 2 7 2 0
0 0 0 0 2 7 2
0 0 0 0 0 2 6




A(2) =




× 2 0 0 0 0 0
2 × 2 0 0 0 0
0 2 × 2 0 0 0
0 0 2 × 2 0 0
0 0 0 2 × 2 0
0 0 0 0 2 × 2
0 0 0 0 0 2 ×




A(3) =




1 1 0 0 0 0 0
1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
0 0 0 0 0 1 1




Petrie demonstrated using his visual representation that
‘it will be readily seen how impossible it would be to invert
the order of any of these stages without breaking up the
links between them’ and stated that ‘the degradation of this
type was the best clue to the order of the whole period’.

Those statements are also intuitively true for such a matrix
representation, with the reservation that complete inversions
of the order (e.g., flipping vertically or horizontally) or other
operations that would not change the adjacent links, will
preserve the regularity, and will be considered with equal
regularity throughout this paper.

The interpretation of the work done by Petrie will remain
largely subjective, as he did not explicitly describe all the
details in the papers and according to ref. [42], his notes
and records were destroyed.

Petrie’s work influenced several prominent American
anthropologists and archaeologists like George Andrew
Reisner, Alfred Vincent Kidder, Alfred Louis Kroeber, Nels
Nelson, Leslie Spier, James A. Ford (several good reviews
and a discussion of such a methodological lineage include
refs [14,39,42,43]), who applied, popularized, and further
developed the methodology to better suit the practical needs
for relative dating.

The evaluation of seriation results remained primarily
intuitive and subjective until Brainerd [44] and Robinson
[45] proposed a desired final form for the matrix: the high-
est values in the matrix should be along the diagonal and
monotonically decrease when moving away from the diag-
onal. The paper included a description of an agreement
coefficient (basically a similarity coefficient customized for
percentage calculations) and a manual procedure and guide-
line for reordering. In addition, an external relative dating
and archaeology-specific test for reordering validation was
also introduced. The most influential contribution, however,
was the mathematical property of the desired matrix form,
which has remained popular along other authors and is
often referred to as Robinsonian matrix, Robinson Matrix
or R-matrix.

About a decade later, several algorithms for chrono-
logical ordering were proposed [46,47], following a com-
prehensive monograph by Hole and Shaw [41], cover-
ing and evaluating the state-of-the-art techniques for auto-
matic seriation. Hole and Shaw also presented an efficient
algorithm called the permutation search, which requires
n(n − 1)/2 + n2 evaluations instead of the exhaustive eval-
uation of all possible orderings.

Besides the algorithmic enhancements, several papers
[48,49] were published about the assumptions, require-
ments, and conditions under which seriation results can be
considered to be approximating the chronological order, not
some other underlying regularity.

The approach of Brainerd and Robinson faced some
immediate criticism by an anthropologist Lehmer [50] for
being too dependent on exact numbers of frequencies and
for not taking into account the differences in the size of
the collections. Dempsey and Baumhoff [51] proposed a
contextual analysis method to cope with such a problem,
which would merely use the information, irrespective of
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whether a specific type of artifact was present or absent.
They justified their approach for being less sensitive to sam-
pling variations and emphasized that ‘types that occur with
low frequency may be among the best time-indicators [and]
the presence of single specimens of certain types may be
crucial in establishing chronologies’. Their approach was
classified as occurrence seriation by O’Brein and Lyman
[14], together with an extensive discussion on the differ-
ences between frequency and occurrence seriation. We con-
sider the progress from frequency seriation to occurrence
seriation favorable due to being directly compatible with
our definition of seriation.

The dialogue between archaeologists and statisticians
was pioneered by Kendall [52,53], who contributed sev-
eral papers on the research of mathematical properties of
the matrix analysis used in archaeology. A similar coop-
eration among mathematicians, statisticians, and archaeol-
ogists eventually led to a dedicated joint conference on
Mathematics in the Archaeological and Historical Sciences.
Those proceedings published in a volume edited by Hodson,
Kendall, and Tautu [54], serve to date as one of the most
comprehensive collections on research done on archaeolog-
ical seriation. The research mainly focused on one-mode
two-way seriation methods, but there were also examples
of two-mode two-way seriation (e.g., ref. [55], p. 7) where
artifacts and their variables were directly analyzed without
transformation to a similarity matrix format.

Regardless of the classical retrospective look on matrix
reordering techniques in archaeology and anthropology,
there is another important branch of research that is seldom
if ever mentioned in the context of previous methods. It is
the work of Jan Czekanowski [27] on matrix reordering and
visualization, which is probably the first published work on
one-mode data analysis that was based on the permutation
of the rows and columns, complemented with color (pat-
tern) coding for better visual perception. He did not have the
goal of chronological ordering, but aimed to develop a dif-
ferential diagnosis of the Neanderthal groups. Differential
diagnosis as a term is mainly used in medicine as a system-
atic method to identify the disease based on an analysis of
the clinical data. However, Czekanowski used it in a wider
sense—as a systematic classification method to identify and
describe groups and their formation in the data. He defined
the (dis)similarity coefficient as the average difference of
the characteristics of two individuals—the average of the
absolute values of differences in characteristics. The results
of the difference calculations helped to form a similarity
matrix, where the elements/cells were shaded in five dif-
ferent (visual) patterns (as shown in Fig. 7). Czekanowski
did not have any formal procedure for rearrangement of the
elements in the matrix; therefore, probably, visual inspec-
tion and intuition was used because the size of the dataset
was also considerably small.

Fig. 7 Czekanowski’s diagram [27] of differences and groups of
skulls.

Methods developed by Czekanowski have suffered partly
from being isolated from Western science. However, the
method was widely used by Polish anthropologists Boleslaw
Rosinski, Andrzej Wiercinski, and Karol Piasecki
(Soltysiak, personal communication, March 12, 2007), who
were disciples of Czekanowski’s tradition and secured the
methodological continuity. According to Soltysiak (per-
sonal communication, March 12, 2007), rearrangement of
the objects was done visually up to matrices with 50 or more
objects and ‘first attempts to find a less intuitive ordering
procedure were made in early 1950s by Skrzywan [56] and
in the Wroclaw school of math (so-called “Wroclaw den-
drit”, a kind of graph accompanying the Czekanowski’s
diagram)’. Decades later, Szczotka published a method
[57] and developed a computer program for that purpose,
and several applications to economics were reported by
Pluta [58]. Recent algorithmic advances on the research
of Czekanowski’s diagram include a genetic algorithm pro-
posed by Soltysiak and Jaskulski [59].

Another interesting methodological lineage exception in
the field of anthropology was the work of Carneiro [60],
who performed a seriation of a two-way two-mode data
table of nine societies and eight culture traits. He developed
a scale analysis method for the study of cultural evolution,
based on a renowned concept of Guttman scale, applied
typically to statistical surveys. An example of the initial
data used by Carneiro and the rearranged ‘scalogram’ is
presented on Tables 3 and 4, respectively.

Using the rearrangement procedure proposed in
Carneiro’s paper, it is clear that, one does not need to eval-
uate all n! • m! permutations of the table. However, the

Statistical Analysis and Data Mining DOI:10.1002/sam



78 Statistical Analysis and Data Mining, Vol. 3 (2010)

Table 3. Initial data used by Carneiro.

Kuikuru Anserma Jivaro Tupinamba Inca Sherente Chibcha Yahgan Cumana

Social stratification − + − − + − + − +
Pottery + + + + + − + − +
Fermented beverages − + + + + − + − +
Political state − − − − + − + − −
Agriculture + + + + + + + − +
Stone architecture − − − − + − − − −
Smelting of metal ores − + − − + − + − −
Loom weaving − + + − + − + − +

Table 4. Rearranged Carneiro’s ‘scalogram’.

Yahgan Sherente Kuikuru Tupinamba Jivaro Cumana Anserma Chibcha Inca

Stone architecture − − − − − − − − +
Political state − − − − − − − + +
Smelting of metal ores − − − − − − + + +
Social stratification − − − − − + + + +
Loom weaving − − − − + + + + +
Fermented beverages − − − + + + + + +
Pottery − − + + + + + + +
Agriculture − + + + + + + + +

solution is far from trivial in case of larger tables with noisy
and missing data. An instructive discussion on non-perfect
scales and unilinear evolution was included in the paper.

Carneiro’s work serves as an interesting example of
how fundamentally different methodological foundations
can lead to methods with similar goals and results.

2.2. Cartography and Graphics

From the perspective of this paper, it would be hard to
overestimate the importance of a monograph, Semiology
of Graphics, published by a French cartographer, Jacques
Bertin [28]. The main arguments and statements of the
presented methodology are accompanied by fine-grained
illustrative examples. Despite his main area of exper-
tise, his goal was to propose a concept of a ‘reorderable
matrix’ (matrice ordonnable) as a convenient generic tool
for analyzing different structures and systems. Reordering
of the rows and columns of matrices was performed
on two-mode data tables, with a strong emphasis on
visualization and value encoding aspects. He stressed the
importance of simultaneous availability of three informa-
tion levels in every effective visual display of data, e.g.,
a classical Bertin’s [7] (p. 33) example of townships in
Fig. 8. One should be able to find an immediate visual
answer to:

• questions asked specifically about the details of data
presented in rows and columns (e.g., Does township
‘08 ’ have a railway station? Which townships have
police stations?);

• local patterns found in the data (e.g., Where there is
no water supply, there are no high schools);

• global patterns and trends found in the data (e.g.,
We are able to identify the transformation of rural
areas to urban and what changes take place in the
characteristics supporting such a transition).

Bertin had some influences from the works of Carneiro
[28] (p. 196) and Elisseeff’s scalogram [7, p. 58], [61], but
the systematic principles he developed for matrices were far
more advanced—categorical and continuous values of data
were supported and the emphasis was to manipulate the
matrices for maximizing the perception of regularity and
relationships, regardless of what the final structural pattern
would look like. However, the only thing that was not there
was the mathematical treatment of matrix permutations and
an automatic procedure to evaluate and perform the matrix
reordering. Bertin was prepared to believe that after defin-
ing the problem, i.e., composing the matrix, data could be
processed by machines, but he himself was performing it
manually using visual perception. One can find an overview
of several mechanical tools and equipment to aid an analyst
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Fig. 8 Bertin’s [7,28] example of matrix reordering.

to perform those datasets from the two subsequent mono-
graphs [7,28]. Bertin [7] (p. 31) considered the comfortable
limits of the proposed graphic information processing to be
120 × 120 with reorderable matrix, 500 × 100 with exper-
imental equipment, and 1000 × 30 with the ‘matrix-file’
approach, where one dimension (mode) is fixed to be non-
permutable.

Bertin’s work is highly recognized within the commu-
nities of human–computer interaction (HCI) and informa-
tion visualization, however, with the main emphasis not
on reorderable matrices, but fundamentals of visual per-
ception and graphic information processing. One of the
most cited recent applications and enhancement of Bertin’s
ideas of reorderable matrices and especially the ‘matrix-
file’ approach is the Table Lens [62], which incorporated
interactive elements for better usability together with the
general focus + context mantra of the information visual-
ization community.

Bertin [7] (p. 15) was convinced that a set of pie charts is
one of the most useless graphical constructions. However,
Friendly and Kwan [63] and Friendly [64] demonstrated
that combining matrix cell shading with small pie charts
to present symmetric correlation matrices can result an
interesting visualization. The idea of the correlogram or
corrgram was to use color and intensity of shading in the
lower triangle of a symmetric matrix and circle symbols in
the corresponding cells of the upper triangle.

Siirtola et al. have recently published, in the information
visualization community, several discussions on the inter-
action [65–67] and algorithmic [68,69] aspects of Bertin’s
reorderable matrices and developed a tool for combining

visualization of parallel coordinates with the reorderable
matrix [70]. Several interesting papers present experiments
and comparisons regarding the readability and interpreta-
tion of the matrix-based representation [25,71]. Mueller et
al [72] have extended the work of Ling [73] on visualizing
similarity matrices to large-scale graphs and evaluate the
interpretability of results from different one-mode vertex-
ordering algorithms, including sensitivity to the initial order
of rows and columns.

Berry et al. [74] proposed a new information retrieval
strategy for browsing hypertext documents by reorder-
ing and visualizing term-by-document matrices. Recently,
this kind of approach has become very common for
co-clustering research [20].

Chen et al. [75] most recently published a Handbook of
Data Visualization, with several chapters presenting discus-
sions and examples about matrix reordering and visualiza-
tion. It reflects, among others, his own contributions on
the generalized association plots [76,77], which was based
on the idea of visualizing the two-way one-mode matrix
after seriation, using different shading to represent the val-
ues of proximity. An interested reader is also referred to an
excellent review [78] presenting the background and history
of seriation and matrix reordering from the perspective of
graphical cluster heat maps.

2.3. Sociology and Sociometry

One of the first influential attempts in sociology to intro-
duce a rigorously measurable and new way of thinking
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was by Jacob L. Moreno with his classic Who Shall Sur-
vive? (ref [79]; interested readers are directed to the revised
edition which is a strongly enhanced version with more
background information and available online free of charge
[80]). It started a new branch in sociology now known
as sociometry, which stressed the importance of quanti-
tative and mathematical methods for understanding social
relationships and catalyzed several works interesting in the
context of the current paper.

Forsyth and Katz [24] were the first to introduce an
approach of rearranging the rows and columns of the
sociomatrix for a better presentation of the results of socio-
metric tests. There seems to be neither an obvious nor an
implicit influence of previous works with rearranging the
matrices, and the motivation for method development seems
to descend directly from Moreno’s work on sociograms.
Forsyth and Katz credited the sociogram as clearly advan-
tageous over verbal descriptions and relationship listings,
but ‘confusing to the reader, especially if the number of
subjects is large’. Katz [81] also argued that ‘the sociomet-
ric art has simply progressed to the point where pictorial
representation of relationships is not enough’ and quantifi-
cations of the data should be sought. It was hoped that the
sociomatrix and the development of methods for analyzing
the matrices would fill that gap. Sociogram drawing was a
manual process and there were still decades until automatic
graph drawing algorithms started to emerge in computer
science, and be used across disciplines.

The concept and construction of the sociomatrices (also
interrelation matrices) was already an accepted research
practice in sociometry. Jennings [82] analyzed leadership
and isolation structures, their variations and illustrated
choices of preferences between individuals with an adja-
cency matrix. Dodd [83] wrote a paper about interrelation
matrices with a purpose ‘to apply algebra to the data of
inter-personal relation in order to increase both the preci-
sion and the generality of any analyses or syntheses of those
data’.

ANDREW

LEO

WILL

INNAR

SVEN

JIMJACQUES

Fig. 9 Sociogram with undirected relations.

A sociomatrix is an asymmetric N × N one-mode two-
way adjacency matrix reflecting the underlying structure
of a directed or undirected graph, which is called a
sociogram (see Fig. 9, where the links represent acquain-
tances between those people in a social network) in this
context. According to Wasserman and Faust [84], socioma-
trix is the most common form for presenting social network
data.

The essence of the method which Forsyth and Katz [24]
built upon the sociomatrix consisted of ‘rearranging the
rows and columns in a systematic manner to produce a
new matrix which exhibits the group structure graphically
in a standard form’. We constructed a simple example to
demonstrate the concordance between a sociogram (Fig. 9)
and a corresponding sociomatrix before (Fig. 10, left) and
after (Fig. 10, right) row and column permutation, where
one can directly identify two distinct groups of people and a
seamless transformation from one cluster to another. Instead
of a binary sociomatrix with undirected single relations,
Forsyth and Katz [24] proposed a matrix permutation (see
Fig. 11 for reconstruction of their results) with multiple
directional relations, denoting positive choices with ‘+’
and negative choices or rejections with ‘–’. However,
those relations were mutually exclusive, so they can be
considered as different values for a single relation.

Self-relations or ‘self-choices’ for a particular relation
are usually (e.g., refs [24,82,85,86]) undefined, serve as an
identifier of rows/columns [81] or, like in this case, marked
with ‘X’ along the main diagonal of the sociomatrix. Such a
common practice is clearly not accidental—sociometry is,
after all, a study focusing on inter-human relations. Wasser-
man and Faust [84] point out that ‘there are situations in
which self-choices do make sense’, but they are typically
assumed to be undefined ‘since most methods ignore these
elements’ [84] or not to relate to themselves [86]. How-
ever, from the unification point of view, there seems to be
no explicit reason why self-relations should be undefined
or excluded from the analysis and we suggest to replace
them with positive choices, at least during the reordering
procedure.

Moreno [87] agreed that a sociogram and a socioma-
trix both offered certain advantages and supplemented each
other, but did not agree with the claim by Forsyth and Katz
that their sociomatrix was superior and more objective in
its presentation than the sociogram. He emphasized that
‘already pair relations are hard to find (from the socioma-
trix), but when it comes to more complex structures as trian-
gles, chain relations, and stars, the sociogram offers many
advantages’. Several of those shortcomings are perfectly
justified criticism even today. However, a chain of relations
is actually the most important thing that such matrix shuf-
fling procedures bring out, which might even be difficult
to detect on a sociogram with thousands of objects. Katz
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Fig. 11 Shaded one-mode two-way asymmetric permutated Forsyth–Katz [24] sociomatrix.

[81] continued with the work of simultaneous reordering of
the rows and columns of a sociomatrix with the augmen-
tation of quantitative approaches and better mathematical
formulation of the problem. A sociomatrix was formalized
with bringing in the notation of zeros for indifference/no
response and introducing permutation matrices. It seems
there was, however, one contradiction. He used the permu-
tation matrix and its transpose for multiplying the original
matrix on the left and right, but even with an N × N

matrix, if it contains asymmetric relations (which is typ-
ical for sociometric tests), it would be far more reasonable
to find two different permutation matrices to maximize the
concentration of positive choices. Furthermore, considering
the overall notations of this paper, asymmetric socioma-
trices should be taken as two-mode two-way matrices for
direct compatibility reasons.

The first method for systematically rearranging a socio-
matrix was presented half a decade later by Beum and
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Brundage [85]. By systematically, we consider methods
which have single interpretations on every step of the pro-
cedure and do not depend on human visual perception or
decision making. Forsyth and Katz [24] also proposed a
simple set of rules for iterative enhancement of the matrix
reordering and approximate maximization of similarities,
but included several abstract and intangible steps. Borgatta
and Stolz [88] implemented the Beum–Brundage procedure
in FORTRAN-II, which handled matrices up to 145 × 145
variables and included several interesting additional fea-
tures like de-emphasizing smaller values in a matrix.

Nowadays, quantitative approaches in sociology have
advanced enormously, with a strong community and a
vast number of contributions in the area of social network
analysis (SNA). However, as far as the author is aware, a
matrix reordering paradigm is not yet very commonly used.
One of the leading software packages in (large) network
analysis and visualization, Pajek [89] (Section 12.2), has
implemented two Murtagh’s seriation algorithms from [90].

In addition, there is a reasonable amount of research
originating from the seminal work on blockmodels [91],
which include alike matrix reordering procedures, but with
the goal of structural aggregation. Therefore, blocks models
are more concerned with clustering without the optimal leaf
ordering and less concerned about the specific intra-cluster
behavior.

2.4. Psychology and Psychometrics

It is quite hard to draw a rigid line between the research
of psychometry and sociometry, as several authors have
published in both fields and there has been significant
cross-influence from both communities. However, for the
moment, the community of psychometry has developed a
compact and focused track of research on the problem of
seriation with a strong consensus on common terminology
and a general understanding of the problem.

Hubert [92,93] was one of the early adaptors of seriation
techniques in psychology, considering a subjects-by-item
response matrix. He performed analyses on both, one-
mode and two-mode matrices filled with zero-one and
integer values and used permutation procedures based on
the algorithms and approaches developed for archaeological
seriation.

Besides the archaeological background, Hubert’s work
was influenced by psychological scaling research carried
out by Coombs [94], who proposed the parallelogram
analysis for searching the patterns in matrices. Coombs
[94] (p. 75) called the concept of reordering objects the
‘order k/n’ analysis, which was a natural extension to the
procedure, what he referred to as ‘pick k/n’.

Having influences from the taxonomy of data developed
by Coombs and terminology proposed by Tucker [16], Car-
roll and Arabie [23] proposed a taxonomy of data and
models for multidimensional scaling, where the taxonomies
of data and models were treated separately. To date, it can
still be considered a de facto taxonomy to use with mul-
tidimensional scaling and related methods, e.g., seriation.
From the perspective of multidimensional scaling, seriation
is just a one-dimensional special case of the problem.

Comprehensive reviews and references for recent advan-
ces can be found from two subsequent monographs on
combinatorial data analysis [95,96] and from a structured
overview of two-mode clustering [36]. It is interesting
to observe that main contributions toward taxonomization
of the methods of seriation and the methods related to
seriation have come from scholars working in the area of
psychology.

2.5. Ecology

Traditions of seriation (which is often referred to as ordi-
nation) and clustering methods in the disciplines of ecology
have strong roots in and descendance from the works of the
Polish botanist and politician Kulczynski [97], who studied
plant associations using the matrix coding and visualiza-
tion approach developed by Czekanowski [27]. Kulczynski
replaced the values of the upper triangle of a symmetric
similarity matrix with different shadings and patterns of a
cell (for a reprint of the diagram with a discussion of the
ecological application, the reader is referred to ref [98]).
This kind of approach for shading was somewhat differ-
ent from the first visual coding proposed by Czekanowski,
who did not preserve the initial similarity values and trans-
formed the (dis)similarity matrix to an asymmetric form
after recoding and shading the values.

In ecology, seriation was often considered the best prac-
tice to perform clustering without explicitly distinguishing
between those two techniques. The application of seriation
was also more far-spread than ‘classical’ clustering tech-
niques used in other disciplines. This may also be the reason
why the tools for researcher to perform seriation had the
highest representation in the packages developed for eco-
logical studies. It is a significant sign of the maturity level
of the discipline from the perspective of seriation method-
ology development and distinguishes it strongly from other
fields. We have performed an illustrative (Figs. 12 and 13)
experiment using the PAST [99] software for data anal-
ysis, which was ‘originally aimed at paleontology but is
now also popular in ecology and other fields’ [100], using
the classical township dataset introduced in another field by
Bertin [28] to depict the universality and cross-applicability
of seriation methods.
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Fig. 12 PAST results for row seriation (option: constrained).

Fig. 13 PAST results for row and column seriation (option:
unconstrained).

Besides the above-mentioned PAST software, seriation
is also available in the clustering package Clustan [98]
(p. 372) and described by the authors of the software pack-
age Primer-E (Plymouth Routines In Multivariate Ecologi-
cal Research) as ‘a simple reordering of columns (samples)
and rows (species)’ that can be an effective way to dis-
play ‘groupings or gradual changes in species composition’
[101] (p. 7/2). The developers of Primer-E also introduced
an interesting method for textual coding of the abundance
values.

The abundance codes proposed by Clarke and Warwick
[101] (p. 7/2) are: ‘1 = 1, 2 = 2, . . . , 9 = 9, a = 10–11,
b = 12–13, c = 14–16, . . ., s = 100–116 ,. . ., z =
293–341, A = 342–398, . . ., G = 1000–1165, . . ., Y =
8577–9999, Z ≥ 10 000 (For X ≥ 4 this is the logarithmic
scale int[15(log10X)–5] assigned to 4–9, a–z, A–Z, omit-
ting i, l, o, I, L, O)’. The result of this coding is an interesting
visualization of a two-way two-mode matrix, using ASCII
graphics instead of plotting the pixels, which is obviously a
reasonable workaround for non-binary datasets on text-only
displays and printers, but infeasible to apply with bigger
matrices. Pioneering examples of using ASCII graphics to
display one-mode two-way reordered matrices can be traced
back to at least 1970s [73].

Legendre and Legendre [98] have published a monograph
about numerical ecology, which includes a comprehensive

overview of data analysis methods in ecology, including
discussions, examples, and applications of seriation. Miklos
et al. have recently published a paper [102] about rear-
rangement of ecological data matrices, using Markov chain
Monte Carlo simulation, which also includes a represen-
tative set of references to seriation methods in ecology.
Mannila et al. [103,104] have recently presented several
seriation problem examples with special emphasis on the
application in paleontology.

2.6. Biology and Bioinformatics

Seriation methods in biology have similar methodologi-
cal roots to those discussed in the previous section covering
the discipline of ecology. The paradigm of data analysis
using the reordering of rows and columns was introduced
to the community of biologists by the famous monograph
of Numerical Taxonomy by Sokal and Sneath [105], which
created a lot of controversy for the strong statements and
criticism against the traditional way of creating taxonomies
in biology. Sokal and Sneath [105] (p. 176) introduced
matrix reordering techniques, using the name ‘differential
shading of the similarity matrix’, and referred to the result
of the seriation procedure as ‘a cleaned up diagram’. They
saw the purpose of rearranging the rows and columns in
the search for the ‘optimum structure in the system’ and
proposed a procedure suggested by Robinson [45] to be
suitable for this goal. It is interesting to observe, that,
while the systematic approach followed the methodologi-
cal lineage of Petrie [38], the shading and general matrix
visualization approach has rather a strong resemblance to
the traditions of Polish scholars Czekanowski and Kulczyn-
ski. Their works were acknowledged and cited by Sokal and
Sneath, yet, not in the context of matrix reordering but due
to similarity coefficient contributions.

Recently, a related concept of biclustering (also
co-clustering or two-mode clustering [106,107]) has gained
acceptance in experimental molecular biology, mainly, to
cope with the latest developments in microarray and gene
expression research. The goal of biclustering is to find
biclusters—co-occurring subsets of genes (rows) and sub-
sets of conditions (columns) [108]. A typical dataset in
bioinformatics for reordering rows and columns is a two-
way two-mode matrix with continuous data. In fact, matrix
reordering techniques have been introduced to gene analysis
decades ago [37,109], but did not attract greater attention
before the prominent contribution by Eisen et al. [110],
who proposed a visual display for genome-wide expression
patterns by combining the dendrogram resulting from hier-
archical clustering with the initial data matrix from DNA
microarray hybridization. The data matrix was reordered
using the order of the leaves in the clustering dendrogram
acquired separately for both modes of the matrix. A decade
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later, the paper by Eisen et al. [110] had accumulated
well over 7000 citations, which gives a good impression
of the influence of such an approach. Another important
publication toward making data analysis and visualization
of gene expression data popular was published by Cheng
and Church [108], who introduced the term ‘biclustering’
to gene expression analysis and proposed a node-deletion
algorithm to search for biclusters. Such mathematical treat-
ment and introduction of two-mode clustering to the bioin-
formatics community attracted hundreds of follow-up arti-
cles, discussions, and algorithms.

However, from the overall picture of the seriation rese-
arch, it seems that the community of bioinformatics has not
yet established a general consensus concerning the goals
and focal emphases of biclustering results. Several surveys
and evaluations of biclustering methods [111–113] have
been published lately, but there seems to be little work
done toward taxonomization of the contributions and the
present reviews rather serve as bibliographical lists with
brief comments and hubs of references. The most impor-
tant open question is whether the essential emphasis of the
goals is on clustering (objects are assigned to groups) or on
seriation (objects are optimally rearranged and assigned to
a position within a sequence). If the goal is to perform clus-
tering simultaneously (sequentially) over two sets of objects
with the motivation of finding local clusters that could oth-
erwise be left unnoticed, the community should strongly
head toward collaboration and consolidation with diclique
decomposition [114] and formal concept analysis [115,116]
research. If the goal is to augment the human analyst to
enable better visual perception of relationships within the
data for better biological insight, the use of classical results
of hierarchical clustering are not efficient in establishing a
seriation of the rows and columns which introduces most
of the regularity within the data. A hierarchical clustering
and dendrograms choose the order of succeeding elements
at every split of the tree arbitrarily or according to the order
of appearance in the data source. However, there are ‘2n–1

linear orderings consistent with the structure of the tree’
[9] generated by hierarchical clustering. To remedy this
situation, several authors have proposed additional proce-
dures to perform optimal leaf ordering of the dendrogram
[8–10,117–119].

Caraux and Pinloche [120] have developed a bioinfor-
matics software package PermutMatrix, where data analysis
of gene expression profiles is performed using several seri-
ation methods. The reader is also referred to an earlier
comprehensive overview of matrix reordering techniques
by Caraux [121].

2.7. Group Technology and Cellular Manufacturing

The machine-group formation problem and cellular man-
ufacturing represents a community, applying block diagonal
seriation with definitely the largest number of technical and
algorithmic contributions toward a more optimal solution
and formal definition. Machine-group formation is one of
the essential steps in Burbidge’s analytic ‘new approach’
to production [122], which later became known as the pro-
duction flow analysis [123]. Production flow analysis is a
manufacturing philosophy and technique for finding fami-
lies of components and groups of machines. It was initially
considered [124] a technological enabler for group technol-
ogy, but those terms were later often used interchangeably.
Burbidge [125] emphasized that it is ‘concerned solely
with methods of manufacture, and does not consider the
design features or shape of components at all’. Although
the general idea of product flow analysis to classify the
components into product families was introduced already
in the early 1960s by Burbidge [122] and independently by
Mitrofanov [126,127], the machine/part incidence matrix
was first explicitly presented by Burbidge [125]. The results
were obtained manually [128], the first attempt to develop
a non-intuitive algorithm was by McAuley [124], who also
stated that ‘at present, as far as is known, the only way
of finding the groups of machines and families of parts
is to rearrange the rows and columns of the matrix, by
hand, until the pattern [. . .] is obtained’. McAuley’s solu-
tion was influenced and based on the works of Sokal and
Sneath [105] and Kendall [40]. However, most algorithmic
approaches started to appear after the rank order algorithm
was proposed [12,129], which worked directly on the initial
matrix. This algorithm, among other similar approaches not
requiring the conversion of two-mode matrix to one-mode
matrix, is classified as an array-based clustering method
within the cell formation research community.

The machine-group formation (or machine-part cell for-
mation) problem is formulated as a binary part-machine
incidence matrix A, where ai,j = 1 means that the machine
i is required to process part j and ai,j = 0 otherwise. We
have chosen a simple example (Fig. 14) from McAuley’s
paper [124] to demonstrate a typical machine/part matrix
and how groups emerge after reordering the rows and
columns. A zero (often referred as void ) element (a4,1)

within an emerged group depicts the reason why reordering
and matrix display is used rather than clustering or any other
classical partitioning method—groups often have irregu-
lar shapes and boundaries and the goal is not only to find
groups but also minimize the void elements, exceptional
elements (elements which lie outside the blocks on the diag-
onal) and bottleneck machines [elements which obstruct
(the most) the decomposition into independent blocks and
subsystems]. This, however, makes the order within the
cluster important and excludes, therefore, the possibility of
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Fig. 14 McAuley’s example [124] of a machine/part matrix.

using classical clustering methods. This kind of additional
domain-specific structural properties might have other inter-
esting semantic interpretations in other fields as well.

Grouping efficiency [130] and grouping efficacy [131]
are the two most frequently used measures to evaluate the
quality of the cell formation solution and have had a strong
impact on introducing rigorous benchmarking expectations
to all new contributions in the field. They are based on
measuring the quality of diagonalization by enumerating
the number of void elements (zeros) in the block along the
diagonal and exceptional elements (ones) away from the
formed cells. Such a judgment, however, presupposes that
we know (or have predicted) the number of two-mode
clusters (there is a similar common problem of finding
the correct k in the classical clustering paradigm as well)
and have identified the cluster boundaries correctly. In
addition to those pretentious assumptions, the measures
are extremely sensitive to the format of the solution. For
example, inversions (flipping horizontally or vertically) and
rotations of the matrix, which essentially do not alter the
structure in the matrix, could be considered equal solutions,
can, however, have a fatal effect toward the ability of those
measures to detect a good solution. Other, more universal
measures that can find any structural pattern amenable to the
dataset are, therefore, more favorable in our context [e.g.,
the measure of effectiveness (ME) proposed by McCormick
et al. [29], which will be discussed in the subsequent
section].

The machine-part cell formation problem has been
solved, using, among others, Hamiltonian path and other
graph theoretic approaches [132–134], integer program-
ming [135], fuzzy clustering [136], evolutionary approaches
[13,137,138], traveling salesman problem (TSP) [139],
neural networks [140–143], branch-and-bound methods
[144–146] and with simulated annealing [147]. However,
it seems, unfortunately, that most of the algorithms are
not known and acknowledged in the other fields applying
two-mode clustering and other methods to analyze binary
datasets. In addition, Park and Wemmerlöv have developed

an artificial shop structure generator [148] for cell forma-
tion research, which is also usable and well-applicable in
all other fields doing research on seriation and two-mode
clustering.

Marcotorchino published a unified approach to block
seriation problems for group technology [149] and proposed
a unified objective function for block seriation, which,
however, required the k number of clusters (blocks) to be
given as an external input. He also published a subsequent
overview paper on seriation problems [150] with a wider
span over different disciplines. Although several structural
types of seriation were identified, he was mainly concerned
with the block diagonal seriation.

The reader is referred to dedicated surveys [151–153]
and results of comparisons [154–156] for a further analysis
of the contributions in the field. A comprehensive overview
and discussion of the research issues in cellular manufac-
turing is available in ref [157], where the applicability,
justification, and implementations of cellular manufacturing
systems are discussed.

2.8. Operations Research

Operations research is an interdisciplinary branch of
applied mathematics and other scientific methods for deter-
mining optimization strategies for the efficient management
of organizations. Potential contributions of seriation and
matrix reordering techniques originating from this disci-
pline are, therefore, inherently more abstract and contain
less domain-specific insights than the ones presented in pre-
vious sections. Such settings, on the other hand, enabled
McCormick et al. [29,30] to contribute, what retrospec-
tively represents an important milestone toward making
seriation methods universally applicable and less sensitive
to structural pattern assumptions. McCormick et al. devel-
oped a seriation approach for matrix reordering called BEA
to identify natural groups in complex data arrays. It was a
nearest-neighbor sequential-selection suboptimal algorithm
with the main intention [29] to assist ‘the analyst who
wishes to begin understanding the interactions in a complex
system’. This algorithm can be considered a breakthrough
for matrix reordering techniques. As far as the author of
this paper is aware, no algorithms were published before
1969 [30] that could perform such a universal reordering
of the initial dataset for both one-mode (object-by-object
or N × N ) and two-mode (object-by-variable or N × M)
datasets. One of the strongest properties of the BEA algo-
rithm is not having any assumptions of the underlying
structure and being less sensitive to noise in the data than
its precedents, making the approach more practical in real-
world scenarios.

McCormick et al. [29] proposed a ME of an array as
‘the sum of bond strengths in the array, where the bond
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strength between two nearest-neighbor elements is defined
as their product’. For any non-negative two-mode matrix
A, the ME is given by:

ME(A) = 1

2

i=M∑
i=1

j=N∑
j=1

αi,j [αi,j+1 + αi,j−1 + αi+1,j + αi−1,j]

(with the convention α0,j = αM+1,j = αi,0 = αi,N+1 = 0)

As noted by McCormick et al. [29,30] and Lenstra [158],
the given problem can be reduced into two separate opti-
mizations (one for finding the order for columns, the other
for rows; we have slightly modified the notation):

Let
∏ = {π(1), π(2), . . . , π(M)} denote all M! permu-

tations of (1,2,. . .,M) and � = {φ(1), φ(2), . . . , φ(N)},
respectively over all N ! permutations of (1, 2, . . . , N ) with
the conventions π(0) = π(M + 1) = αi,0 = 0 and φ(0) =
φ(N + 1) = α0,j = 0:

arg max∏ =
i=M∑
i=1

j=N∑
j=1

απ(i),j [απ(i−1),j + απ(i+1),j ]

arg max� =
i=M∑
i=1

j=N∑
j=1

αi,φ(j)[αi,φ(j−1) + αi,φ(j+1)]

Lenstra [158] pointed out that the BEA is equivalent to
the well-known TSP, but, actually, the interpretation of the
ME optimization as two TSPs was already shown earlier
by the original authors in the publicly available technical
report [30] (p. 82). Climer and Zhang [159] have recently
presented an approach for converting the matrix reordering
problem to one-mode TSP format with additional k dummy
cities for cluster boundary detection. The solution provided
by the TSP solver is used to rearrange the data matrix.
They have reported better results according to the criteria of
ME for the examples presented by McCormick et al. [29],
using the BEA. However, several authors [11,154,160] have
revisited the original algorithm, investigated its properties
in detail, and found that the BEA provides near-optimal
results in different settings and is not trying to fit any
specific structural pattern in the data; therefore, sometimes
outperforming even dedicated and less universal domain-
specific algorithms.

In addition to the BEA, the same group developed
another, less known algorithm—the moment ordering algo-
rithm [30,161]. Deutsch and Martin [161] consider the
algorithm as a tool ‘for analyzing arrays of data whose
underlying organization is known but which is hoped that
there is a single underlying variable, according to which
the rows and columns of the arrays can both be arranged
in meaningful one-dimensional orders’. Both of the algo-
rithms provide seriation in the data, but the latter searches
for a solution to position all the values along the diagonal.

Similarly to isolated methodological lineage exceptions
in other disciplines, several generic methods to reorder
objects and matrices were developed by Mullat [31–33] and
Vyhandu [34,35,162,163], which were initially mainly used
for survey data analysis, but later to most of the scientific
disciplines covered in previous sections. Those methods
and approach to matrix reordering were mainly influenced
by the contributions [29,161] classified under operations
research in this review. Mullat formalized a family of meta-
heuristics called the monotone systems [31–33] and it was
applied to matrix reordering problems by Vyhandu [35].
Vyhandu’s matrix reordering techniques can, similarly to
McCormick’s [29] BEA, reduce the problem into two sep-
arate tasks for reordering the rows and columns. Vyhandu
[34,35] demonstrated that a specific entity-to-set weight
(structural similarity) measure called conformity [162,164]
is favorable for such task. These methods were enhanced
and fine-tuned over three decades resulting a set of matrix
reordering tools supporting categorical data, several struc-
tural patterns (i.e., the result is not restricted to one spe-
cific structural pattern in the output, e.g., block diagonal or
checkerboard form), and higher-mode seriation [165–167].

Some recent publications and monographs covering ele-
ments from this branch of heuristics and methods include
[37,168] (Section 4.2.1), [169] (Section 3.5.4), as well as
application examples of text mining [170] and inventory
classification [171].

3. CONCLUSIONS

A representative variety of related work on seriation
problems was highlighted in the presented historical over-
view, where independent work in different disciplines has
corroborated the advantages of understanding structural
patterns in the system by reordering rows and columns
in matrices. The real benefit in such an interdisciplinary
overview is not about reinventions across the disciplines,
but about understanding the differences in order to share
methods, approaches, and technical results.

The concept of seriation and matrix reordering can work
toward attaching data mining together with the advantages
in information visualization and SNA, which emphasize
the importance of simultaneous consideration of global and
local patterns.

In the future, reordering the matrices should be a ubiq-
uitous and common practice for everybody inspecting any
data table. According to Bertin’s [7] emphasis, a matrix
or data table is never constructed conclusively, but recon-
structed until all relations which lie within it can be
perceived. However, seriation cannot be considered ubiqui-
tously usable, until implemented and shipped as a standard
tool in any spreadsheet and internet browser for enabling
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such analysis. Then one can say that seriation and matrix
reordering is usable. That is the main future goal for
seriation.
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